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Abstract Direct electron transfer to cytochrome c oxidase
(CcO) is investigated as a function of packing density of the
surface layer. This is varied by the surface concentration of
chelator molecules when the enzyme is immobilized on the
electrode using the his-tag technology. Chelator molecules

with a terminal nitrilotriacetic acid group are synthesized ex
situ in contrast to in situ synthesis used in a previous work.
Self-assembled monolayers of the chelator mixed at
different mole fractions with a dilution molecule are
prepared to bind the CcO after complex formation with
Ni2+ ions. The CcO, which is immobilized in the
solubilized form, is then reconstituted into a protein-
tethered bilayer lipid membrane (ptBLM). Varying the
mixing ratio of chelator to dilution molecules enabled us to
control the packing density of CcO residing in the ptBLM.
Subtle differences in the architecture of the protein/lipid
layers revealed by surface-enhanced IR absorption spectros-
copy are considered to be essential for an effective electron
transfer. Cyclic voltammograms are measured under anaer-
obic conditions at different scan rates and analyzed by
means of a model which describes the transfer of four
electrons to CcO in the ptBLM. The rate constants thus
obtained show a marked dependence on the packing density.

Introduction

Electrochemistry had proved to be valuable for the
investigation of electron transfer (ET) to proteins [1–3].
For this purpose, proteins were either adsorbed to gold or
carbon electrodes or covalently attached via specific linker
molecules [4]. Linkers offer the advantage of a predeter-
mined orientation of the bound protein, which is important
for an effective ET. The his-tag technology seems to be
promising in this context [5]. We had introduced this
technique into the spectroelectrochemistry of membrane
proteins such as the cytochrome c oxidase (CcO) [6]. Lipid
molecules could be reconstituted around the protein to form
a protein-tethered bilayer lipid membrane (ptBLM; Fig. 1).
Direct ET into the redox centers of the protein was
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investigated, provided the protein was immobilized in an
adequate orientation [7].

Orientation, however, is not sufficient to ensure an
effective ET. Packing density of the proteins turned out to
be another crucial parameter [8]. Packing density was
controlled by the surface concentration of chelator mole-
cules, with a terminal nitrilotriacetic acid group (NTA;
Fig. 2). They were prepared in situ from a surface-bound
active ester (dithiobis(N-succinimidyl propionate) (DTSP))
as described in our previous work [7]. In situ synthesis,
however, allows insufficient control over the surface
concentration. Therefore, in the present work, we proceeded
to replace the in situ by an ex situ synthesis to form the
chelator, dithiobis(nitriloacetic acid butylamidyl propionate
(DTNTA), according to the reaction equation given in Fig. 2

Self-assembled monolayers were then formed from
solutions of DTNTA mixed with dithiodipropionic acid,
dithiobis (propionic acid) (DTP), the precursor of DTNTA,
in preselected mole fractions. The surface concentration of
DTNTA could thus be controlled more effectively com-
pared to previous studies. Cytochrome c oxidase with the
his-tag attached to subunit II was immobilized and
reconstituted into a ptBLM. The kinetics of ET to the
redox centers was probed as a function of packing density

employing cyclic voltammetry. To analyze the data, electron
transfer was modeled using the four-electron transfer model
developed recently [9]. Moreover, IR spectroscopy revealed
subtle differences in the architecture of the protein/lipid
layers that could be essential for an effective ET.

Materials and methods

Dithiobis (nitriloacetic acid butylamidyl propionate)
(DTNTA) N-(5-amino-1-carboxypentyl) iminoacetic acid
(ANTA; 5.63 mmol; 1.47 g) in 20-ml dry DMF and 2 ml
triethylamine has been stirred at 80 °C till ANTA was
dissolved. DTSP (1.01 g; 2.56 mmol) solved in 10 ml dry
DMF was added to the solution and kept stirring at 80 °C for
24 h. After removing the solvent under reduced pressure, the
resulting mixture was filtered with diethylether through silica
gel. After removing the solvent, the product was purified by
flash-SiO2 column chromatography (methanol/acetone=1:1)
with 428 mg (24%) yield of a brown viscous oil. 1H NMR
(250 MHz, MeOD) δ: 7.33 (s, 2H), 3.35 (s, 8H), 3.16 (t, 2H,
J=7.5 Hz), 2.96 (t, 4H, J=7.5 Hz), 2.81 (m, 2H), 2.73 (m,
2H), 2.65 (t, 4H, J=7.5 Hz), 1.65–1.45 (m, 12H) ppm. [10]
C (100 MHz, MeOD) d: 179.79, 175.26, 173.40, 70.91,

Fig. 1 Schematics of the reconstitution of the CcO immobilized by
the his-tag attached to subunit II into a ptBLM by in situ dialysis. In
this orientation, the CcO receives electrons from the electrode via the
first electron acceptor, CuA. In its native environment, i.e., the inner

mitochondrial membrane, CcO receives electrons from reduced
cytochrome c, from which they are transferred to CuA and further on
to the other centers heme a, heme a3, and CuB in this sequence

NH2 N COOH

COOH

COOH
S S

O
OO

NN

O

O

O

O

O S S

O
N
H O

N
H

N N
HOOC COOH

HOOC

COOH

COOH
COOH

+
DMF

Et3N

ANTA DTSP DTNTA

2

Dithiobis(N-succinimidyl
propionate)

N-5-(amino-1-carboxy
pentyl) iminodiacetic
acid

dithiobis-(nitriloacetic acid
butylamidylpropionate)

Fig. 2 Reaction scheme of the
ex situ formation of the chelator
molecule, DTNTA from the
precursors DTSP and ANTA
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58.24, 42.12, 36.84, 31.34, 29.87, 28.52, 26.71, 26.64 ppm.
Mass spectrum (ESI): Calculated for C26H42N4O14S2: m/e
698.76. Found: m/e 699.27.

Preparation of the two-layer gold surface used for the IR
measurements It was done as previously described [11, 12].
Briefly, the polished silicon Attenuated Total Reflection
(ATR) crystal was immersed for 1 h into 10% solution of
(mercaptopropyl) triethoxysilane (MPTES). After rinsing
with ethanol and ultrasonic cleaning with methanol, the
samples were dried in air and annealed at 100 °C for 1 h.
After cooling down to room temperature, the samples are
immersed in water for 10 min and dried under a stream of
nitrogen. Then a 30-nm gold film was deposited by
electrothermal evaporation onto the ATR crystal. Gold
nanoparticles were grown onto the gold film by immersion
into 50 ml of an aqueous solution of hydroxylamine
hydrochloride (NH2OH HCl; 0.4 mM), to which 500-μl
portions of an aqueous solution of gold(III) chloride
hydrate (0.3 mM) were added five times with a delay time
of 2 min. After that the samples were rinsed with water and
dried in a stream of nitrogen.

Immobilization of the protein It was performed as previ-
ously described [6, 7, 13]. Briefly, CcO from Rhodobacter
sphaeroides with a his-tag engineered to the C terminus of
subunit II was expressed and purified according to Mitchell
and Gennis [10]. Either template-stripped gold electrodes or
the above-mentioned ATR crystals with a two-layer gold
surface were immersed for 24 h in a solution in dry DMSO of
DTNTA and DTP mixed at mole ratios varying from 0.1 to 0.4
(total concentration 2 mg/ml). After rinsing with DMSO,
followed by deionized (DI) water pH=5, the slides were
immersed for 30 min in 40 mM NiSO4 in acetate buffer
(50 mM, pH=5.5) followed by thorough rinsing with DI water
pH=5 to remove the excess NiSO4. Then, CcO dissolved in
dodecyl β-D-maltoside (DDM) phosphate buffer (K2HPO4

0.1 M, KCl 0.05 M, pH=8, 0.1% DDM) was adsorbed to the
NTA-functionalized surface at a final concentration of
10 nM. After 4-h adsorption time, the cell was rinsed with
DDM phosphate buffer. Then, a DiPhyPC solution (40 µM)
in DDM-phosphate buffer was added. Dialysis was per-
formed by adding Biobeads (Bio-Rad Laboratories GmbH,
Munich, Germany) to the lipid–detergent solution.

Spectroelectrochemical measurements The spectroelectro-
chemical cell was mounted on top of a trapezoid silicon
ATR crystal required for a single reflection in the ATR
spectroscopy mode [12]. The IR beam of the FTIR
spectrometer (VERTEX 70 FTIR spectrometer, from
Bruker, Karlsruhe) was coupled into the prism at an angle
of incidence Θ=60°. The total reflected beam IR intensity
was measured with a photovoltaic mercury cadmium

telluride detector. For potentiostatic titrations, the ATR-
FTIR setup was equipped with a function generator which
triggered the potentiostat of the Autolab (PGSTAT302; Eco
Chemie, B.V., Utrecht, Netherlands) as well as the
spectrometer. Measurements under anaerobic conditions
were performed in a buffer solution flushed with Ar
containing K2HPO4 (0.05 M), KCl (0.1 M), pH=8, and
the oxygen trap consisting of glucose (0.3% w/w), glucose
oxidase (75 µg/ml), and catalase (12.5 µg/ml). Electro-
chemical measurements were taken in a three-electrode
configuration with gold as the working electrode, a Ag|
AgCl,KClsat reference and a platinum wire as the counter
electrode. All electrode potentials are quoted vs Standard
Hydrogen Electrode (SHE).

Spectra were analyzed using the software package OPUS
6 (Bruker Optics GmbH; Ettlingen). Spectra of the protein
were corrected with respect to the substrate in buffer solution
at the appropriate potential. In addition, the band at
1,643 cm−1 due to water incompensation was subtracted
from the respective spectrum of the protein. A linear baseline
correction was performed between 2,500 and 1,300 cm−1.

Simulation of cyclic voltammograms and parameter fitting
We have recently presented a model describing the transfer
of electrons to a protein complex adsorbed to an electrode
containing four redox centers. The model is based on two
possible mechanisms [9]. In the first mechanism referred to
as “sequential ET,” the first center can take up electrons
from the electrode, while the other centers exchange
electrons with their neighbors in sequence, as shown in
Fig. 3a. If applied to CcO, the centers 1, 2, 3, and 4
represent CuA, heme a, heme a3, and CuB, respectively.
This mechanism, thus, reflects the pathway of electrons
which is generally accepted to be followed in CcO when
it receives electrons from its genuine donor, i.e., cyto-
chrome c (see Fig. 1). In the second mechanism referred to
as “independent ET,” all centers can take up electrons
directly from the electrode but do not exchange electrons
with their neighbors (Fig. 3b). In this case, no unambiguous
assignment of centers 1–4 to the redox centers in CcO is
possible. The mathematical description of the model can be
found in the Electronic Supplementary Material.

To simulate cyclic voltammograms, the model was
transformed into an electrical network representation, and
the network simulation program Spice could then be used
for integration [14]. Spice has been introduced previously
to model bioelectrochemical processes across membranes
[15]. It is in the public domain and available for various
computer systems. We routinely use MacSpice (version
3f5) on Mac computers with OS X (versions 10.4.x). The
fitting of parameter values of the model to experimental
data was performed by means of the program MODFIT
[16], which was implemented in the control structure of Spice.
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For further information on this routine and details of the
MacSpice program, contact D.Walz (dieter.walz@unibas.ch).

Results and discussion

Characterization of the surface layer by impedance
spectroscopy

The packing density was controlled by the surface
concentration of chelator molecules (DTNTA). This was
achieved by binding the CcO to self-assembled monolayers
of DTNTA mixed with DTP at different mole fractions.
Thereafter, the CcO was reconstituted into a ptBLM. The
quality of membrane formation was verified by electro-
chemical impedance spectroscopy. Capacitance and resis-
tance of the layer before and after membrane formation is
shown in Fig. 4 for mole fractions of 0.1, 0.2, and 0.3. High
resistances of the order of megaohm square centimeters
indicate good electrical sealing properties. The decrease of
the capacitance values indicate that detergent and water
molecules residing between the proteins are replaced by
lipid bilayer patches, considering the dielectric constant of
lipids (2.2) is smaller than that of water (80) and proteins.
The lowest capacitance (14 µF cm−2) was obtained at a

mole fraction of 0.2. This is high compared to 7 µF cm−2

measured in earlier studies indicating a high surface
coverage by the protein [7]. A pure lipid bilayer membrane
would have a capacitance as low as 0.5 µF cm−2.

Characterization of the surface layer by surface-enhanced
IR absorption spectroscopy (SEIRAS)

SEIRAS had been used previously to investigate the
oriented immobilization of CcO molecules onto an in situ
functionalized surface [17]. The same technique with slight
modifications was used to investigate the oriented immo-
bilization in the case of the ex situ functionalized surface
[18]. Modifications concern different preparations of the
gold film [11] and different orientations of the CcO. CcO in
the orientation with the his-tag engineered to subunit I was
used previously [17].

In the present study, CcO with the his-tag attached to
subunit II was immobilized on the two-layer gold film on
the ATR crystal of the IR spectrometer, modified with
mixtures of DTNTA/DTP at different mole fractions.
SEIRA difference spectra were measured in the ATR
configuration as a function of absorption time. The
DTNTA/DTP-modified two-layer gold electrode was used
as the reference. The results are shown in Fig. 5 compared

Fig. 3 Kinetic schemes for the
models of sequential (a) and
independent electron transfer (b)
to a complex with four redox
centers. The various redox states
(oxidized or reduced) of the
centers arising upon electron
transfer are considered as dif-
ferent states of the complex,
which are numbered sequential-
ly. Vertical transitions between
states represent electron transfer
between the electrode and a
center (electron uptake), which
are governed by the electro-
chemical rate constants ke,i.
Horizontal transitions represent
transfer between two centers
(electron exchange), which are
described by the forward rate
constants ki,i+1. All transitions
are reversible but, for graphical
reasons, are represented here
only by single arrows indicating
the positive direction of transi-
tion flows. For further details,
see [9] and the Electronic Sup-
plementary Material
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to respective spectra measured on the in situ functionalized
surface.

Figure 5 shows the difference spectra with positive
bands appearing at 1,641, 1,524, 1,442, 1,360, and
1304 cm−1. The first two bands assigned to the amide I
and the amide II modes of the protein backbone vibrations
were slightly shifted vs our previous finding, 1,658 and
1,571 cm−1, respectively [17]. This is probably due to the
different orientations of the CcO. The band at 1,304 cm−1

could be assigned to the amide III mode of CcO [19]. The
band at 1,442 corresponds to a band at 1,440 cm−1 found
earlier. This one and the band at 1,360 cm−1 account for the
symmetric stretching vibrations of the carboxylate group of
DTNTA, the chelator for the Ni2+ ion [17, 20]. The most
striking difference between the in situ (Fig. 5a) and ex situ
(Fig. 5b–e) coupled DTNTA modified surface is the
difference in the amplitude of the absorbance of the amide

I band. The absorbance in the ex situ case is by a factor of 2
to 5 smaller than the in situ case. A lower surface
concentration can be excluded as deduced from the surface
coverage obtained from the electrochemical data, at least at
the 0.2 mole fraction. Hence, the relatively low absorbance
can only be explained in terms of a larger distance of the
CcO molecules from the surface of the ATR crystal. The
intensity of SEIRA spectra is known to decrease exponen-
tially as a function of the electric field extending in the
solution. This is supported by the amplitude of the band at
1,442 cm−1, growing relatively more rapidly with CcO
binding. A possible explanation is a conformational change
in the DTNTA/DTP monolayer. In the case of the ex situ
formation of DTNTA molecules, the molecules seem to
have greater flexibility to bind his-tags. This could be due
to a more extended conformation than in the case of
DTNTA formed in situ. Moreover, at the mole fraction 0.2,
a band at 1,598 cm−1shows up that is not present in the case
of the other mixing ratios. This band accounts for the amide
I vibration of β-sheets, whereas the band at 1,641 cm−1 is
characteristic for the α-helices in the protein backbone of
CcO. CuA, the first electron acceptor, is located in the
region of the β-sheets, contrary to the remaining redox
centers, which are found in the helical region. We conclude
that even though the packing density of proteins seems to
be higher as seen from the impedance and cyclic voltam-
metry data (see below), β-sheets may unfold from the α-
helices to facilitate ET to CuA, particularly at the mole
fraction 0.2.

While the spectra of the solubilized CcO correspond by
and large to our previous findings (Fig. 5), the difference
spectrum after formation of the lipid membrane is markedly
different (Fig. 6a). Band assignments are summarized in
Table 1. Previously, a large negative band at 3,500 cm−1

accounted for water molecules displaced from the surface.
By contrast, a positive band at 3,455 cm−1 appeared that we
consider as water molecules accumulating in the submem-
brane space. A negative OH band at 3,691 cm−1 seems to
indicate other water molecules displaced from the space
between proteins. Positive bands between 2,852 and
2,961 cm−1 were considered earlier only in terms of
phospholipids accumulating between proteins. By contrast,
small negative bands at 2,855 and 2,929 cm−1 appeared in
the present study. They may be due to CH stretching
vibrations of both the detergent (DDM) and lipid mole-
cules. If the lipids are inserted at a larger distance from the
surface while detergents are removed particularly from the
submembrane space, the overall response is negative.
Moreover, positive and negative bands were observed in
the amide I region, which were not observed in [7], see
Fig. 6b for an expanded scale. That means the protein
backbone may rearrange as lipids are inserted in between.
From this, we conclude a more extensive rearrangement of
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spectra before (shaded bar) and after (open bar) reconstitution into a
ptBLM, obtained on a TSG electrode ex situ functionalized with
mixtures of DTNTA/DTP at different mole fractions. Mean values and
standard deviations of three experiments
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the entire layer structure than in the case of the in situ
functionalized surface.

Different packing densities most likely account for
some of the differences between the investigations,
particularly concerning [7]. A larger flexibility of the entire

DTNTA-CcO architecture is assumed in the case of the
DTNTA/DTP-modified surface. The linker seems to extend
into the aqueous phase providing not only a larger
submembrane space but also a greater mobility of the
bound proteins.
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Fig. 5 Immobilization of the CcO solubilized in DDM followed by
surface-enhanced ATR-IR-Spectroscopy. Difference spectra were
taken every 5 min. a The two-layer gold surface was modified with
DTSP/DTP, while DTNTAwas formed in situ. b–e The two-layer gold

surface was modified with mixtures of DTNTA/DTP at a mole
fraction of 0.4 (b), 0.3 (c), 0.2 (d), and 0.1 (e). The modified surfaces
were used as the reference. The insets show the amplitude of the band
at 1,641 cm−1 plotted as a function of time
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Fig. 6 Reconstitution of the CcO immobilized by the his-tag attached
to subunit II into a protein-tethered bilayer lipid membrane (ptBLM)
by in situ dialysis followed by surface-enhanced ATR-IR-
Spectroscopy. a Difference spectra before and after in situ dialysis in
the range 1230 – 4000 cm−1. (b) Difference spectra before and after in
situ dialysis in the range 1,250–1,800 cm−1 in an expanded scale

Table 1 Band assignment of the difference spectrum (Fig. 6) after insertion of lipids to form the protein-tethered lipid bilayer membrane

Wave number/cm−1 Group Comment

1237 OH deformation vibration H2O and POOH

1265 Amide III 1,299 cm−1

1293

1479 Amide II CcO solubilized: 1,550 cm−1 [7], 1,532 cm−1 in Fig. 6
1585

1630 Amide I CcO solubilized: 1,658 cm−1 [7], 1,641 cm−1 in Fig. 6
1683

2336 CO2 measurement in the presence of air
2360

2511

2855 CH valence vibration DDM and phospholipids (DPhyPC)
2929

3455 OH vibration in hydrogen bonds H-bonds primarily in sp3-hybridized atoms like O, N, and P
3691 Valence vibration of free OH

The reference spectrum was taken from the CcO solubilized in the DDM containing buffer solution and immobilized on the DTNTA/DTP
modified surface (mole fraction 0.2)
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Fig. 7 Potentiometric titration of CcO by surface-enhanced ATR-IR-
Spectroscopy. Difference spectra reduced, fully oxidized for activated
CcO immobilized via his-tag on subunit II (cf. Fig. 1), a on an in situ
functionalized surface, b on an ex situ functionalized surface. Potential
applied was 900 mV vs SHE for the fully oxidized state and varied from
500 to −700 mV in 100-mV steps for reduced states (bottom to top)
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Finally, a potentiometric titration was performed
employing the ptBLM prepared under optimized conditions
of ex situ formed DTNTA compared to the one formed in
situ. Figure 7 shows the difference spectra taken at different
potentials in both cases. Bands in the region of the amide I
band were analyzed by plotting their peak absorbance A vs
the applied potential E and fitting the data to the sigmoid
function

A ¼ $Aro

1þ exp E � Eip

� �
=ϕ

� � þ A0 ð1Þ

where ΔAro denotes the absorbance difference between the
fully reduced and fully oxidized forms, while the term A0

accounts for a possible deviation from zero. Eip is the
potential of the inflection point, which reflects the midpoint
potential Em of the redox center, and ϕ is a scaling factor.
Ideally, A0=0, ϕ=RT/F≈26 mV, and Eip=Em. Such sigmoid
functions of the absorbance are a clear indication of

individual redox transitions. Figure 8 shows examples
obtained from the two different preparations. Slight differ-
ences in Eip and ϕ are within experimental errors. So, these
results are consistent with earlier findings.

Cyclic voltammetry

Cyclic voltammograms (CVs) were first measured under
turnover conditions of the enzyme, i.e., in the presence of
oxygen (Fig. 9). Electrons that are transferred to the protein
are consumed for the reduction of oxygen to water in the
catalytic center of the enzyme consisting of heme a3 and
CuB (Fig. 1). This gives rise to an amplified current density
measured after activation of the enzyme under aerobic
conditions. Figure 9 shows CVs of the CcO in the presence
of oxygen as a function of mole fraction ranging from 0.1
to 0.4. They show peaks at –0.2 and –0.6 V, which were
attributed to the repeated electron and proton transfer due to
multiple turnover of the enzyme [7]. The current density of
the ET peak plotted as a function of mixing ratio shows a
maximum at a mole fraction of 0.2 (see inset of Fig. 9).
These results indicate that the optimum packing density
for CcO is attained at a mole fraction of chelator molecules
of 0.2.

Finally, CVs of the same samples were recorded at
different scan rates under anaerobic conditions for molar
fractions of 0.1, 0.2, and 0.3 (Fig. 10a–c). At the mole
fraction of 0.2, a single peak at –0.2 V appears in the
reductive and oxidative branch of the CV, as found in
earlier studies [7], whereas only a cathodic peak appears at
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the other mole fractions. These peaks had been shown
earlier on the basis of spectroelectrochemical studies using
Raman and IR to represent the direct ET to the four centers
CuA, heme a, heme a3, and CuB [7, 18].

Analysis of cyclic voltammograms

When analyzing the CVs in terms of the models, it was
found that reliable and representative values for the fitted
parameters are only obtained if both reductive and
oxidative peaks are included [9]. As is evident from
Fig. 10, this is only the case for the electrode modified
with DTNTA mixed with a mole fraction of 0.2. These CVs
could be successfully analyzed by means of the sequential
ET model but not with the independent ET model. Hence,
we concluded that electron transfer to and within the CcO
in a ptBLM most likely follows the sequential pathway [9],
which is equivalent to ET from the genuine electron donor
of CcO, i.e., cytochrome c (cf. Fig. 1).

The reductive peaks of all CVs shown in Fig. 10 were
then analyzed with the model of sequential ET. The
analysis with reductive and oxidative peaks simultaneously
revealed that the electron exchange reactions are so much
faster than electron uptake that they cannot be resolved [9].
Therefore, a large and fixed value (10,000 s–1) was
assigned to the pertinent rate constants ki,i+i (cf. Fig. 3a).
The values of fitted parameters thus obtained are listed in
Table 2. Since only reductive peaks were included, the data
for Eo,i are merely indicative; however, those for the surface
concentration of CcO, Γp, and for the electrochemical rate
constant, ke,1, were found to be reliable when compared to
the result of the analysis with both peaks.

The Γp values found for the electrodes modified with a
mole fraction of 0.1 and 0.2 are comparable to the surface
concentration (6 pMol/cm2) calculated by means of the
dimensions of the CcO molecule for a monolayer of the
protein closely packed on the air/water interface of a
Langmuir trough. The Γp value found for the mole fraction
0.3 is much too high, which is most likely due to an
insufficient base line correction of these particular CVs.
The ke,1 values clearly depend on the mole fraction, with an
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Table 2 Parameter values fitted to the reductive peak of CVs shown
in Fig. 10 using the sequential ET model

Mole fraction 0.1 0.2 0.3

Γp/(pMol cm–2) 5.122±0.04 5.947±0.03 17.26±0.13

Eo,1/mV –238.7±1.7 –276.4±0.9 –245.1±1.5

ke,1/s
–1 121±15 277±14 65±5

Eo,2/mV –303.2±1.6 –311.4±1.2 –315.6±1.7

k1,2/s
–1 10,000 10,000 10,000

Eo,3/mV –103.5±2.9 –221.3±1.4 –109.7±2.9

k2,3/s
–1 10,000 10,000 10,000

Eo,4/mV –185.5±2.4 –328.4±1.3 –198.7±2.5

k3,4/s
–1 10,000 10,000 10,000

The uncertainty of fitted values based on variance analysis [16] is
indicated by ±; values without ± were fixed in the fitting procedure
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optimum at 0.2, which definitely shows that ET is affected
by the surface concentration of chelator molecules. This is
in line with results of an earlier investigation on the effect
of packing density for in situ functionalized surfaces [8].

Conclusion

This investigation illustrates how a particular surface
architecture can be designed for a protein to facilitate direct
electron transfer from an electrode. This holds even if the
protein is preoriented by a specific linker. Electron transfer
to CcO immobilized using a very similar strategy had been
shown to be extremely slow (0.002 s−1) and not even
sensitive to the orientation of the his-tag [21]. In our case,
electron transfer rates to the first electron acceptor are well
within the range known for other proteins [1–3]. Packing
density has proved the most decisive parameter. It had to be
controlled in relatively low margins, made easier by
chelator molecules prepared ex situ. The linker even in
the extended conformation seems to be effective for a
relatively fast ET. An additional benefit of this methodol-
ogy is the larger distance of the protein from the surface,
thus allowing for a larger submembrane space and a larger
flexibility of the β-sheet structure that extends into the
aqueous phase. Flexibility seems to be of general signifi-
cance for an effective ET, particularly for large membrane
proteins such as the CcO. Potentiometric titrations followed
by FTIR had shown substantial conformational changes of
the protein backbone of α-helices and β-sheets during
electrochemical reduction and oxidation. We concluded that
the protein may undergo changes of helix geometry or
strain on reduction [18]. A too high packing density would
most likely prohibit such an effect. In summary, the
optimum packing density was achieved on the basis of a
monolayer of DTNTA mixed with DTP at a mole fraction
of 0.2.
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Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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